Научный калькулятор для статистических расчето

СОДЕРЖАНИЕ НАЗНАЧЕНИЕ КНОПОК ДИСПЛЕЙ (2-СТРОЧНЫЙ ДИСПЛЕЙ) ... **ЧАЛО РАБОТЫ** Включение и выключение питания Настройка форматов отображения. Редактирование ввода ... Повтор, копирование и ввод нескольких выражений .. стр. ость вычислений диапазоны вволимых значений стр ость вычислений, диапазоны вводимых значе док выполнения операций ищения об ошибках и поиск ошибок Перед использованием калькулятора

ОСНОВНЫЕ ВЫЧИСЛЕНИЯ стр. 15 ифметические вычисления Вычисления с использованием памяти ерации с дробями ревод в метрическую систему ... Вычисления с инженерной формой представления .. стр. 2 ФУНКЦИОНАЛЬНЫЕ НАУЧНЫЕ ВЫЧИСЛЕНИЯ стр. 27 Логарифм, натуральный логарифм, антилогарифм и логарифм b по основанию а еобразование координат лиспение с комплексными лиспами СТАТИСТИЧЕСКИЕ ВЫЧИСЛЕНИЯ сления регрессии дстановка, комбинация, факториалы и генерация РАСШИРЕННЫЕ НАУЧНЫЕ ВЫЧИСЛЕНИЯ шение уравнений нкция поиска решения SOLVE .. Функция CALC Вычисление производной .. Вычисление интеграла ...

перации с матрицами

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

СОВЕТЫ И ПРЕДУПРЕЖДЕНИЯ ЗАМЕНА БАТАРЕИ

*Для одного вычисления ошибка составляет ± 1 в 10-м знаке сле запятой. Для экспоненциального отображения ошибка в вычислении составляет ± 1 в последней значимой цифре. Ошибки нарастают в случае поспеловательных вычислений что способствует их увеличению. (Это также верно, когда внутренние последовательные вычисления выполняются с использованием операций ^(x^y), ^x√v, x!, nPr, nCr и т.д.) Вблизи особой точки или точки перегиба функции уровень ошибок может возрастать. Порядок выполнения операций

Калькулятор автоматически определяет очередность выполнения операций. Это означает, что алгебраические выражения можно вводить в порядке их написания, очередность Преобразование координат Дифференциал и интеграл : d/dx, ∫dx : P(, Q(, R(: log_ab(a, b) : i~Rand(A, B) Генерация случайных целых чисел

2) Функции типа А Куб, квадрат, обратное число, факториал: x^3 , x^2 , x^{-1} , x!, \circ ' $\,$ " Инженерные символы Нормальное распределение начение регрессии : $\hat{\chi}$, $\hat{\chi}_1$, $\hat{\chi}_2$, реобразование единиц измерения угла : DRG ▶ Теревод в метрическую систему

* Для выполнения функции типа А введите значение для Степени и корни : ^(х^у), ^х√

4) Дробь : a b/c, b/c

 Сокращенный формат умножения перед π, e (основа натурального логарифма), название памяти или переменной: 2π , 3e, 5A, $A\pi$ и т.д.

r, ³√, log, ln, e^x, 10^x, sin, cos, tan, sin 1, cos 1, tan 1, sinh, cosh, tanh, sinh-1, cosh-1, tanh-1, (-), d, h, b, o, Neg, Not, Det, Trn, arg, ения функции типа В нажмите вышеуказанн кнопки функций, затем введите значение для вычисления

12

μ₀ 1.2566370614x10⁻⁶ N A⁻²

376.730313461

I_P 1.616024x10⁻³⁵

t_P 5.39121 x10⁻⁴⁴

m_u 1.66053886 x10⁻²⁷

N_Ah 3.990312716x10⁻¹⁰

Eh 4.35974417 x10⁻¹⁸

1 12906.403725

1.16591981 x10⁻³

R_K 25812.807449

7) Сокращенный формат умножения перед функциями типа В:

Стандартное ускорение силы тяжести g

. Квант проводимости 2e² / h

Ризическая атмосфера

Волновое сопротивление вакуума

Длина Планка $\hbar/$ mpc=(\hbar G / c^3)^{1/2}

Время Планка **І**_Р / с=(\hbar G / с⁵)^{1/2}

Постоянная кристаллической решет

Энергия Хартри e² / 4 π ε ₀a₀

2| µ e | / /t

остоянная в законе смещения Вина b 2.8977685 x10⁻³

Постоянная Лошмидта N_A / Vm n₀ 2.6867773 x10²⁵

стоянная Джозефсона 2e / h K_J 483597.879 х10⁹

Поперечное сечение Томсона $(8\,\pi\,/\,3)$ г $^2_{\rm e}$ $\sigma_{\rm e}$ $0.665245873\,{\rm x}10^{-28}$

малия магнитного момента электрона а_{в.} 1.1596521859 x10⁻³

Гиромагнитное отношение электрона γ_е 1.76085974 x10¹¹

2. g-фактор свободного мюона-2(1+ a_µ) g_µ -2.0023318396

22

Постоянная атомной массы

Электронвольт: (е / С)Ј

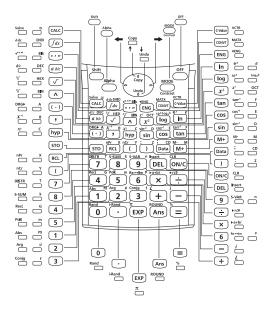
11

DEC: Положительное: 0 ~ 2147483647

OCT: Положительное: 0 ~ 177 7777 7777

HEX:Положительное: 0 ~ 7FFF FFFF

Отрицательное: -2147483647 ~ -1


Отрицательное: 200 0000 0000 ~ 377 7777 777

Отрицательное: 8000 0000 ~ FFFF FFFF

иер	Постоянная	Символ	Значение	Единицы
	Масса протона	mp	1.67262171 x10 ⁻²⁷	kg
	Масса нейтрона	m _n	1.67492728 x10 ⁻²⁷	kg
	Масса электрона	m _e	9.1093826x10 ⁻³¹	kg
	Масса мюона	mμ	1.8835314x10 ⁻²⁸	kg
	Радиус Бора $lpha/4\pi$ R ∞	a ₀	0.5291772108x10 ⁻¹⁰	m
	Постоянная Планка	h	6.6260693 x10 ⁻³⁴	Js
	Ядерный магнетон е \hbar / 2mp	μ_N	5.05078343 x10 ⁻²⁷	J T ⁻¹
.	Магнетон Бора е \hbar / $2m_{\rm e}$	μ_B	927.400949 x10 ⁻²⁶	J T ⁻¹
	h / 2π	ħ	1.05457168 x10 ⁻³⁴	Js
0.	Постоянная тонкой структуры ${ m e}^2/4\pi\epsilon_{0}\hbar{ m c}$	α	7.297352568x10 ⁻³	
1.	Классический радиус электрона α ² a ₀	re	2.817940325 x10 ⁻¹⁵	m
2.	Комптоновская длина волны h / m _e c	λς	2,426310238 x10 ⁻¹²	m
3.	Гиромагнитное отношение протона $2\mu_{\rm D}/\hbar$	γр	2.67522205 x10 ⁸	s ⁻¹ T ⁻¹
4.	Комптоновская длина волны протона $h/m_{ m p}$ с	λ _{c,p}	1.3214098555 x10 ⁻¹⁵	m
5.	Комптоновская длина волны нейтрона h/m_0 с	λ _{c,n}	1.3195909067x10 ⁻¹⁵	m
ŝ.	Постоянная Ридберга $lpha^{2}$ m $_{ m e}$ c / 2 h	R∞	10973731.568525	m ⁻¹
7.	(единая) атомная единица массы	u	1.66053886 x10 ⁻²⁷	kg
3.	Магнитный момент протона	μр	1.41060671x10 ⁻²⁶	J T -1
9.	Магнитный момент электрона	μe	-928.476412 x10 ⁻²⁶	J T ⁻¹
٥.	Магнитный момент нейтрона	μn	-0.96623645 x10 ⁻²⁶	J T −1
1.	Магнитный момент мюона	μμ	-4.49044799 x10 ⁻²⁶	J T ⁻¹
2.	Постоянная Фарадея N _A e	F	96485.3383	C mol ⁻¹
3.	Элементарный заряд	е	1.60217653x10 ⁻¹⁹	С
4.	Постоянная Авогадро	NA	6.0221415x10 ²³	mol ⁻¹
5.	Постоянная Больцмана R / N _A	k	1.3806505 x10 ⁻²³	J K ⁻¹
3.	Молярный объем идеального газа RT / р	Vm	22.413996 x10 ⁻³	m ³ mol ⁻¹
7.	Т=273.15 K, p=101.325 kPa Молярная газовая постоянная	R	8.314472	J mol ⁻¹ K ⁻¹
7. 3.			299792458	m s ⁻¹
9.	Скорость света в вакууме $ \label{eq:condition} $ Первая постоянная излучения $2\pi h c^2$	C ₀	3.74177138x10 ⁻¹⁶	m s · W m²
э. Э.		C ₁	1.4387752 x10 ⁻²	m K
ر.	Вторая постоянная излучения hc/k	c ₂	1.400//02 X IU	III IX

21

Благодарим за приобретение калькулятора Canon для научных расчетов. Модель "F-788dx" поддерживает 497 научных, татистических и других функций, таких как вычисление интегралов и дифференциалов, операции с матрицами, с векторами, содержит в памяти 79 фундаментальных констант, Рекомендуется прочитать данное руководство пользователя по эксплуатации и все важные замечания перед использованием F-788dx. Старайтесь во время дальнейшего использования держать данное руководство под рукой. НАЗНАЧЕНИЕ КНОПОК

8) Перестановка (nPr) и сочетание (nCr), угол (∠). Точка (●)

11) +, -12) and [И]

10) x, ÷

13) хпог[исключающее НЕ-ИЛИ], хог[исключающее ИЛИ], Операции с одинаковым приоритетом выполняются справ налево. Пример: e^xln√120 → e^x{ln(√120)}. Другие операции

выполняются слева направо Операции в скобках выполняются первыми. Если в вычислении используется аргумент, выраженный отрицательным числом, это отрицательное число должно быть заключено в скобки. Пример: $(-2)^4 = 16$; и $-2^4 = -16$

Сообщения об ошибках и поиск ошибок Калькулятор заблокирован, когда на дисплее отображается сообщение с указанием причины ошибки.

■ Нажмите омс, чтобы удалить ошибку, или ■ Нажмите кнопку или для отображения выражения с курсором под ошибкой, чтобы ее можно было устранить.

Сообщение об ошибке	Причина	Действие
Math ERROR	Результат вычисления находится за пределами допустимого диапазона вычисления вычисления вычисления с использованием значения, превышающего допустимый диапазон ввода. Попытка выполнения непогичной операции (деление на ноль и т.д.).	Проверьте введенные значения и убедитесь, что все они соответствуют допустимому диапазону ввода. Обратите особое внимание на значения во всех используемых областях памяти.
Stack ERROR	Объем стека для запоминания чисел и стека управления превышен.	Упростите вычисление. Числовой стек имеет 10 уровней, стек операторов - 24 уровня. Разделите выражение для вычисления на две или более частей.

13

Комптоновская длина волны мюона h / m $_{\mu}$ c $\mid \lambda$ 11.73444105 x10⁻¹⁵ 1.867594298 x10⁻¹⁵ Лагнитный момент протона Гиромагнитное отношение нейтрона 7

Масса альфа-частицы Гиромагнитное отношение протона μ'_р / ħ (H₂O, сферический образец, 25°C) протона 1-µ ′_р / µ_р (H₂O, сферический образец, 25°C)

23

 $\lambda_{c,p}/2\pi$

асса альфа-частицы

Магнитный момент альфа-части.

(газ, сферический образец, 25°С)

! Константы нельзя округлить. Источник: Peter J. Mohr и Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2002, для публикации в архивном журнале в 2004 году.

режим вычислений с векторами . : режим решения уравнений : режим градусов. : режим радиан. : настройка фиксированного числа знаков после запятой : научные вычисления. вычисления с инженерной формой представления

режим вычисления с комплексными числами

дисплей (2-строчный дисплей)

SHOR MAHYC

: кнопка гиперболических функций

: отображение значения из памяти

режим вычисления с матрицами.

Использование

скользящей крышки

Чтобы открыть или закрыть

крышку, сдвиньте ее, как показанс

<Индикаторы состояния>

: независимая память.

сохранение в память

: статистический режим.

: режим регрессии.

полярные координаты : величина угла : переключение между действительной и мнимой частью комплексного числа : мнимое число : отображение нескольких выражений.

Действие Причина Svntax ERROR Попытка выполнения жмите кнопку <-- или = ошибкой и внесит Arg ERROR ажмите кнопку 🖛 или причины ошибки и . внесите необходимые Dim ERROR В режиме вычислений причины ошибки и внесите необходимые Попытка выполнения

возможно получить Нажмите кнопку ← или → зультат, используя для отображения места и внесите необходимые Перед использованием калькулятора

Solve ERROR

Перед началом выполнения вычислений проверьте состояние индикаторов, отображающих текущий режим вычисления (CPLX SD... и т.д.), и настройку единиц измерения угла (Deg, Rad Gra). ■ Восстановление первоначальных настроек для режима вычисления ите \$\frac{\text{inf}}{\text{cal}} \bigset{2} (режим) \bigset{2} для восстановления начальных настроек по умолчанию для режима вычисления. Режим вычисления : COMP Единица измерения угла : Deg

Проверьте текущий режим вычислени

Экспоненциальный формат отображения : Norm 1, Eng Off Формат отображения комплексных чисел : a+bi рмат отображения дробей знак разделителя десятичной дроби : Dot (точка)

При этом содержимое переменных в памяти сохраняется. ■ Восстановление первоначальных настроек калькулятора Если состояние настроек калькулятора точно неизвестно, рекомендуется восстановить первоначальные настройки ькупятора (режим вычисления "СОМР", единицы измег угла "градусы" и очистить память повтора и переменных). Для этого нажмите следующие кнопки: Shift CLR 3 (All / Bce) =

Перевод в метрическую систему В калькуляторе имеется 170 пар преобразования, с помощью которых можно преобразовывать различные метрические единицы измерения • Нажмите кнопку омт для входа в меню конвертера. Здесь представлено 7 категорий величин (расстояние, площадь, температура, объем, вес, энергия и давление), в общей сложности содержащих 34 обозначения единиц

квадратный ярд

квадратная миля

гектар

градусы Фаренгейта

градусы Цельсия галлон (Великобр.)

пинта

унция (тройская или аптекарск

физическая атмосфера

траницы выбора категории

влево, нажимая кнопку 🖛 или 🖚

стр. Символ

hectares

0 + 5 cow измерения. Нажмите кнопку 🕇 или 🌡 для выбора другой траница выбора меню) • На странице категории перемещайте курсор выбора вправо/ подтверждение выбора ft² → → = (подтверждение образования значения в m² сантиметр ! Если полученным результатом является слишком большо исло, на нижнем дисплее появится индикатор [-Е-]. Нельзя нажать кнопку =, чтобы выбрать большое число, но можно квадратный фут

НАЧАЛО РАБОТЫ

калькулятор включается.

он автоматически выключается

Первое использование:

Включение и выключение питания

. Извлеките изоляционную вкладку, батарея будет

2. Нажмите кнопку сброса, используя кончик стержня

(Выключение питания): при нажатии этой кнопки

Функция автоматического выключения питания:

Настройка контрастности дисплея

установлена, и калькулятор можно будет включать

шариковой ручки или любой другой острый предме

омс (Включение питание/очистка): при нажатии этой кнопки

Если калькулятор не используется в течение около 7 минут

Нажмите кнопки $\stackrel{\text{shift}}{\bigcirc} \stackrel{\text{consu.}}{\bigcirc}$, и появится следующее изображение для настройки контрастности ЖК-дисплея.

Для настройки более темного уровня контрастности нажмите кнопку

Нажмите кнопку ом для подтверждения и очистки экрана.

F-788dx позволяет выполнять в одном вычислении до 79

цифровых кнопок, кнопок арифметических операций, кнопок

Начиная с 73-го действия, курсор изменяется со знака [_] на [■],

что означает, что объем памяти уменьшается. В случае если

потребуется ввести выражение, требующее более 79 действий,

■ Для выполнения основных операций нажмите кнопку ^{море} (1)

Арифметические вычисления + - × ÷

отрицательного показателя степени) их следует заключать в

Операция

Данный калькулятор поддерживает 24 уровня выражений в скобках.

Операция

tan (-) 4 5 ÷ (-)

tan ((-) 4 5 ÷

! Когда число 🕦 больше 🕔, появится значок [Syntax ERROR/

Вычисления с использованием Ans M- M+ M STO RCL

Существует 20 переменных памяти (от 0 до 9, от А до F, M, X,

т и 2, в которых можно хранить данные, результаты и специальные значения.

Для сохранения значений в памяти нужно нажать кнопку (570) +

кнопку переменной памяти.
• Для вызова значений из памяти нажмите кнопку кс + кнопку

Чтобы удалить содержимое памяти, достаточно нажать кнопку
 о (по) + кнопку переменной памяти.

15

Чтобы быстро вернуться в режим вычисления можно нажать кнопку (), которая находится на страницах выбора категории. Однако после выбора единицы основания для преобразования кнопки ↑, ↓ или () работать не будут.

Дисплей

<u></u> → <u>feet</u> m mil

 $10+5ft^2 \rightarrow m^2$

10.4645152

Пример: Преобразовать 10 + (5 ft² \rightarrow m²) = 10,4645152

Y и Z), в которых можно хранить данные, результаты и

(i) (2) (ii)

(-) 2 • 5)

(результат)

Во время выполнения вычислений на калькуляторе буде

гображаться сообщение [PROCESSING/Обрабо

При вычислении отрицательных значений (кроме

закрывающиеся скобки = можно опустить.

действий. Одним действием считается каждое нажатие

НАУЧНОГО ВЫЧИСЛЕНИЯ ИЛИ КНОПКИ (Ans). Shift, Alpha MODE

следует разделить его на две или более частей.

ОСНОВНЫЕ ВЫЧИСЛЕНИЯ

тобы перейти в режим СОМР.

вычисления

an - 45) ÷ (-2)

an (- 45 ÷ -2)

Переменные памяти

енной памяти.

Объем вводимых символов

считается действием.

Или нажмите shift Сопттавт для выхода или возврата к последнему

🖚 🖛

выполнить следующие действия Последовательность - Выберите другую величину для действий А преоблагования изменя йствий А преобразования, нажав кнопку → или ←. следовательность - Очистите экран с помощью кнопки 🕬 и выйдите из экрана выбора. педовательность - Нажмите (омп) для возврата к экрану предыдущего вычисления Вычисления с инженерной формой представления 🕬 🛗 При включении инженерных символов с помощью СТ 🛨 🚺 🗓 можно использовать следующие 9 символов. На ЖК-диспле-

отобразится индикация [Eng]. Операция: Величина Единицы измерен кило Мега Alpha G Гига 10⁹ Tepa Allpha m Милли 10⁻³ 10⁻⁶ Микро 10⁻⁹ Alpha p 10⁻¹² Фемто

Выбор режима MODE Нажмите кнопку моры для начала выбора режима вычислений с

Режим

← COMP CPLX SD → 1 2 3

Операция

С помощью кнопки ← → или можно отобразить следующую В следующей таблице показано меню выбора режима:

MODE 1	COMP	Обычное вычисление	
MODE 2	CPLX	Вычисление с комплексными числами	CPLX
MODE 3	SD	Статистическое вычисление	SD
MODE MODE 1	REG	Вычисление регрессии	REG
MODE MODE 2	BASE	Вычисления с основанием п	d/h/b
MODE MODE 3	EQN	Решение уравнений	EQN
MODE MODE MODE	MATX	Операции с матрицами	MATX
MODE MODE C	VCTR	Операции с векторами	VCTR
MODE MODE MODE MODE	Deg	Градусы	D
MODE MODE MODE MODE 2	Rad	Радианы	R
MODE MODE MODE S	Gra	Градиент	G
MODE ← ← 1	Fix	Настройка фиксированного числа	FIX
		знаков после запятой	
MODE ← ← 2	Sci	Научные вычисления	SCI
MODE ← ← 3	Norm	Экспоненциальное представление	
MODE ← 1	Disp*1	Выбор настроек дисплея	
*1 Параметры выбора настройки лисплея			

Первая : Нажмите кнопку (1) [EngON] или (2) [EngOFF] для страница включения или выключения инженерных символов. : Нажмите кнопку 1 [ab/c] или 2 [d/c], чтобы задат отображение смешанной или неправильной дроби.

→ → : Нажмите кнопку 1 [Dot/точка] или 2 [Сотта/запятая], чтобы задать символ разделителя десятичной дроби или разделитель каждых 3 символов

: В режиме вычисления комплексных чисел нажмите кнопку ^{море} ← 1 → С помощью кнопок 1 [a+bi] или 2 [r $\angle \theta$] можно выбрать форму представления числа в прямоугольной или полярной системе координат.

Пример: 23 + 7 (сохранить в переменной А), вычислить сину

Операция вычисления	Дисплей (верхняя строка)	Дисплей (нижняя строка)
23 + 7 sto _^	23+7 → A	30.
sin RCL A =	sin A	0.5
0 sto _A	0 → A	0.
		_

Независимая память Для независимой памяти

миспользуется та же область амяти, что и для переменных. Для вычисления су нарастающим итогом достаточно нажимать кнопку

м→ (добавить в память) или — (вычесть из памяти);

Если постоянно нажимать кнопки операторов (+, −, x, ÷, x², x³,

x⁻¹, x!, DRG ▶, ^(x^y), ^x√, nPr и nCr), отображаемое значени менится на [Ans] плюс кнопка оператора. Затем можно ыполнить новое вычисление, используя последнюю запись в вмяти ответов.

Операция вычисления	Дисплей (верхний)	Дисплей (нижний)
123+456M+	123+456M+	579.
x ² =	Ans ²	335,241.

 Нажмите кнопку (Ань) для вызова и использования самых последних записей, сохраненных в памяти ответов. вычисления Дисплей (верхний) Дисплей (нижний) 789900 — Ans = 789900 – Ans

Память ответов не обновлена, поскольку выполнена

16

Пример: Преобразовать 0.0007962 секунды в наносекунды = 79620000 x 10⁻⁰⁹ Операция Дисплей (верхний) Дисплей (нижний • 0007962 **=** 0.0007962 µ ▲

0.0007962 n 📤 Пример: 0.128 г + 9.3 кг = 9300.128 г 0 ● 128 + 9 ● 3 | 0.128 + 9.3k k ▲ J_{pha} k ≡

Фиксированная, научная, нормальная, ОКРУГЛЕНИЕ ить число знаков после запятой, задать число кнопку мор ← ← на следующем экране выбора:

← Fix Sci Norm → 1 2 3

Нажмите 1 (настройка : на экране отобразится [Fix $0 \sim 9$?]. фиксированного числа знаков после запятой) 3атем можно указать число знаков после запятой, нажав ① ~ ⑨. Нажмите 2 (научные : на экране отобразится [Sci 0 ~ 9?].

Затем можно указать число значащи цифр запятой, нажав 0 ~ 9. : появится [Norm 1 ~ 2?]. Затем можно Нажмите 3

указать формат экспоненциальног представление) представления, нажав 1 или 2. Norm 1 : Экспоненциальное представление используется автоматически для целых значений, содержащих

более 10 цифр и десятичных значений, содержащих более <u>двух</u> знаков после запятой. Norm 2 : Экспоненциальное представление используется автоматически для целых значений, содержащих более 10 цифр и десятичных значений, содержащих более <u>девяти</u> знаков после запятой.

преобразования дробей: десятичных, смешанных и неправильных. Дробные вычисления, дроби \longleftrightarrow Преобразование десятичных дробей

Настройка форматов отображения

нифр. Результаты. содержащие большее число цифр,

автоматически отображаются в формате экспоненциальн

отображения влияет только на результаты вычисления.

Пример: Изменение формата отображения 1.23 x10-03

m 1, EngOFF

' значимых цифр

после запятой: "7"

учные вычисления

дставление: Norm 2

Пример: 1.23 x10⁻⁰³ = 1.23 м (мили)

Настройки дисплея Операция

курсора в пределах верхней строки (ввода). Можн

Пример (с редактированием): 1234567 + 889900

Замена введенных цифр (1234567 ightarrow 1234560)

Калькулятор поддерживает операции с дробями и

нерные символы: Вкл. МОВЕ ← 1 1

кенерных символов Shift 4ENG

редактировать по мере необходимости.

Операции с дробями

Редактирование ввода

-788dx для отображения результатов может использовать до 10

представления. Можно ввести значение в десятичном формате с

плавающей запятой, с фиксированным числом знаков после

запятой или в формате научных вычислений. При этом формат

Настройки дисплея Операция Дисплей (нижни

123 🗶 ● 00001 🖃

1.2300 x10⁻⁰³

1.23

← → DEL Insert Undo

1234567+8899

1234560±8899 -

a b/c d/c

0.00123

MODE ← ← 2 5

MODE ← ← 3 2

MODE ← ← (1) (7)

Новый ввод начинается с левой стороны верхней строки (ввода).

Если запись составляет более 12 цифр, строка последовательно

прокручивается вправо. Нажмите кнопку 🖚 🖚 для перемещения

Настройки дисплея Операция Дисплей (нижний

0

Пример Операция Дисплей (нижни 1 (a b/c) 2 (a b/c) 3 $\frac{2}{3} + \frac{5}{6} = 2\frac{1}{2}$ + 5 a b/c 6 = 2 ـ 1 ـ 2. — <-> 2.5 (Десятичная дробь) 2 _ 1 _ 2.

• Когда общая сумма цифр дробной величины (целое число + числитель + знаменатель + разделительные знаки) превышает 10, результат автоматически отобразится в десятичном формате.

Когда операции с дробями сочетаются с десятичным значением результат будет отображаться в десятичном формате

Десятичные \longleftrightarrow Смещанные дроби \longleftrightarrow Преобразование неправильных дробей

Пример Операция Дисплей (нижний)

$5.25 \longleftrightarrow 5\frac{1}{4}$	5 • 25 =	5.25
(Десятичная ↔		
Смешанная дробь)	a b/c	.4داد5
(Смешанная дробь ↔		
Неправильная дробь)	Shift a b/c	21」4.

• Преобразование дроби может занимать до двух секунд Можно задать формат отображения результата операций с дробями (если результат больше единицы) в виде смешанной дроби или неправильной дроби. Просто нажмите кнопку ^{мов} ← [Disp/Дисплей] ⇒, затем нажмите кнопку, соответствующую нужной настройке:

1 a b/c : Смешанная дробь 2 b/c : Неправильная дробь

отображения неправильной дроби [d/c].

17

Надпись [Math ERROR/Математическая ошибка] появляется. если вводится смешанная дробь, но при этом выбран формат

имеры: 57 ÷ 7 x 20 = ?? Операция ройка по умолчанию. Задание | 57 🙀 7 💌 20 😑 ображения 4 знаков после МОДЕ ← ← 1 4 162.8571 запятой. (Внутреннее вычисление лжается 16 знаков) 162.8571 пнение внутреннего угления в соответствии Shift ROUND × 20 = 162.8580 заданными настройками пя десятичных чисел. ображение 6 знаков для 5 ← ← 2 6 1.62858 x10 учных вычислений. Задание формата вычисления | 🖰 🗲 🗲 🔞 📵

ФУНКЦИОНАЛЬНЫЕ НАУЧНЫЕ ВЫЧИСЛЕНИЯ ■ Нажмите кнопку ^{море} 1. чтобы включить режим СОМР для

выполнения функциональных научных вычислений.
■ Во время выполнения вычислений на калькуляторе будет отображаться сообщение IPROCESSING/Обработка).

помощью кнопки (1) для

 $\pi = 3.14159265359$

Квадрат, корень, куб, кубический корень, степень, корень степени, обратное число и число Пи **Пример:** $(\sqrt{-2^2+5^3}) \times \pi = 35.68163348$

Дисплей Дисплей (верхний) (нижний) Операция

√ ((((-)2()(x²) + 5 Shift x² D Shift π $(\sqrt{(-2)^2 + 5^3})\pi$ 35.68163348

Пример: $(\sqrt[3]{2^6} + \sqrt[5]{243})^{-1} = 0.142857142$

Операция 243) Shift x^{-1} = $(\sqrt[3]{2^6 + 5} \times \sqrt{24})$ 0.142857142

1<u>2</u>34560+8899 → ка не замигает "2" DEL ~ 134560+88990 → "2" удаляется Вставка (889900 → 2889900) 134560+<u>8</u>8990 **→** в" и 🗓 мигают поочередно

• После последовательного удаления введенного значения

кнопки (очо) на экране отобразится значок •
• Нажмите опробления до 79 введенных символов (ов. или отмены сброса элемента и возврата в

предыдущий экран.
• Ели нажать 🖭 ... для удаления символов, а затем

попностью очистить лисплей, калькулятор сначала восстановит последний символ, удаленный с помощью кнопки [], а затем поочередно будет восстанавливать

другие удаленные символы.
• После ввода новых данных и выполнения команды

вычисления калькулятор не сможет выполнить функцию

Повтор, копирование и ввод нескольких выражений

• Объем памяти повтора составляет 128 байт и позволяет

После выполнения вычисления выражение для вычисления и его результат автоматически сохраняются в памяти

повтора.
• С помощью кнопки ↑ (или ↓) можно повторно просмотреть

калькулятора с помощью кнопок С 2 = (или 3 =); переключении режимов калькулятора;

: вычисление определенного процента от значения (A \boxtimes B $\stackrel{\text{Shift}}{\bigcirc}$).

Пример Операция Дисплей Дисплей (нижний) (нижний)

Снижение : значение"А" снижено на "В%" (А ⋉ В 🛗 😓)

Пример Операция Дисплей Дисплей (верхний) (нижний)

процент увеличения от "В" составляет

Операция Дисплей Дисплей (верхний) (нижний)

 $\left(\frac{A+B}{B}\right)$ x 100% (A + B $\stackrel{\text{Shift}}{\bigcirc}$ $\stackrel{\text{$\%$}}{\bigcirc}$)

изменение от "А" к "В":

 $\left[\frac{\mathsf{B}-\mathsf{A}}{\mathsf{A}}\right]$ % (A $\left[-\right]$ B $\stackrel{\mathsf{shift}}{\bigcirc}$ $\stackrel{\mathsf{\%}}{\bigcirc}$)

70 820 × 25 5hift % 820 x 25 %

ычисление процента значения от другого значения

выполненные выражения для вычисления и результаты. • Память повтора очищается при:

Можно выполнить следующие вычисления с процентами:

Процентная доля 750 750 ÷ 1250 5hift 750 ÷ 1250 %

Увеличение: значение "А" увеличивается на "В%" $(A \times B \overset{\text{shift}}{\bigcirc} \overset{\text{%}}{\longrightarrow} +)$

820 увеличивается 820 x 25 ^{Shift} " + 820 x 25 % +

820 уменьшается 820 x 25 hift — 820 x 25 % —

Пример

следующее меню:

750, процентная доля ввеличения 750 равна 300 + 750 hift %

изменение 25 равно 30 — 25 Shift % 30 — 25 %

Преобразование единиц измерения угла

Процентное увеличение: если "А" складывается с "В", то

Процентное изменение : если "А" изменено в "В", процентное

18

В калькуляторе в качестве единиц измерения угла по умолчани

← Deg Rad Gra →

ниц измерения на экране отобразится индикатор 🖸 (градусы),

1 2 3

Затем нажмите соответствующую кнопку 1, 2 или 3 для

выбора единиц измерения угла. В зависимости от выбранны

"радианы" и "грады") нажмите " DRG ▶ , на экране появитс

D R G

1 2 3

отображенного значения в выбранные единицы измерения.

Пример: Преобразовать 180 градусов в радианы и грады

R

G

3.141592654

180°

Тригонометрические вычисления sin cos tan sin' cos' tan' hyp

исключением вычислений гиперболических функций выберите

■ Перед использованием тригонометрических функций (за

соответствующие единицы измерения (Deg/ Rad/ Grad)

Для преобразования единиц измерения угла ("градусы"

Затем нажмите 1, 2 или 3 для преобразования

 $(180^{\circ} = \pi^{pag} = 200^{rpag})$

Операция

^{DE} → → → 2 (Режим радиан)

DE ← ← ← 3 (Режим град)

с помощью кнопки МОДЕ.

■ $90^{\circ} = \frac{\pi}{2}$; радиан = 100 град.

180 Shift DRG 1 =

используются "градусы". Если необходимо изменить единицы

измерения угла на "радианы" или "грады", несколько раз нажмите мор, пока не появится экран настройки:

инициализации настроек

Вычисления процентов

(A 🖃 B Shift 🖔)

хранить выражения для вычисления и результаты

помощью кнопки (DEL) или полного его сброса с помощью

ление (1234560 → 134560)

Удаление "889900", 🖸 продолжает 🔍

кмите и удерживайте

Отмена (889900)

Восстановить "889900"

134560+<mark>8</mark>8990 → 134560+2<mark>8</mark>899 →

↑ 134560+2[]

shift Undo ← 560+2889900 []

Операция	Дисплей (верхняя строка)	Дисплей (нижняя стро
8+9=	8 + 9	17.
5 × 2 Shift : Ans + 6 =	5 x 2	10. _{Dis}
	Ans + 6	16.
↑ ↑ Shift Copy	9:5 x 2: Ans + 6	17.
	8 + 9	17. _{Dis}
	5 x 2	10. _{Dis}
	Ans + 6	16.

как вычисление будет производиться на последней строке.

для вычисления, используя знак :....

Стеки вычислений ■ Этот калькулятор использует области памяти, называемые

уровень стека.

чисел) и команд (+ — х ...) в соответствии с их последовательностью по ходу вычислений. Стек для сохранения чисел имеет 10 уровней, стек для команд -24 уровня. Ошибка стека [Stack ERROR/Ошибка стека]

"стеками", для временного хранения числовых значений (

возникает, когда выполняется вычисление, превышающее размер стека. ■ При выполнении операций с матрицами используется до двух уровней матричных стеков. При возведении матрицы в

квадрат, в куб или обращении матрицы используется один

■ Вычисления производятся в последовательности, указанной в разделе "Порядок выполнения операций". После завершения вычисления значения, сохраненные в стеках, удаляются.

Процентное соотношение : отношение / проценты каждой отдельной пропорции в выражении для вычисления Если A + B + C = D "A" = a% от "D", где $a = \frac{A}{D} \times 100\%$

Примеры: Для вычисления доли каждой части 25+85+90=200 (100%), доля 25 равна 12.5%, 85 - 42.5%, 90 - 45%

Операция	Дисплей (верхний)	Дисплей (нижний)
25 + 85 + 90 sro* ^	25+85+90 → A	200.
25 ÷ RCL * A Shift %	25 ÷ A %	12.5
85 🛨 RCL 🖰 Shift %	85 ÷ A %	42.5
90 🕀 Alpha * A Shift %	90 ÷ A %	45.
* Moveo coversuate con	му зизивний в переме	HHLIN HOMETH, SOTOM

нажмите кнопку (RCL) или Alpha + переменную памяти чтобы вызвать и использовать данное значение.

Можно использовать кнопки градусов (часов), минут и секунд для выполнения вычислений выражений в градусах, минутах и преобразовывать шестидесятиричные значения в десятичные. Градусы-минуты-секунды ← Десятичные дробы

Примеры Операция Дисплей (них 86°37' 34.2" ÷0.7 = 86 @ . # 37 @ . # 34.2 @ . # ⊕ 0.7 🖃 123°45'6" → 123.7516667 123.7516667 2.3456 → 2°20'44" 2.3456 = Shift 4°'''

Тригонометрические функции (sin/ cos/ tan), обратные

Операция

($\sin 45$) $\stackrel{\text{Shift}}{\bigcirc}$ $\stackrel{x^2}{\bigcirc}$

hyp sin 2.5 — hyp cos

 $\cosh^{-1} 45 = 4.499686191$ | hyp | $\sinh t \cos^{-1} 45 = 4.499686191$ | 4.499686191

Логарифм, натуральный логарифм, антилогарифм и логарифм b по основанию а $\stackrel{[log]}{=}$ $\stackrel{[log]}{=}$ $\stackrel{[log]}{=}$ $\stackrel{[log]}{=}$ $\stackrel{[log]}{=}$ $\stackrel{[log]}{=}$

g 255 + In 3 = 3.505152469 log 255 + In 3 = 3.505152469

Alpha logab 3 7 81) —

1(•)2(=)

log 1 =

29

0.80250518

1.41421356

-0.082084998

15.89871899

MODE ← ← ← 1

тригонометрические функции (sin-1/ cos-1/ tan-1)

sin 53° 22' 12" = 0.802505182 | sin 53 err 22 err 12 err

гиперболические функции (sinh-1/ cosh-1/ tanh-1)

 $\frac{1}{\sqrt{2}} = 0.25 \pi \text{ (Rad)}$

Гиперболические функции (sinh/ cosh/ tanh), обратные

Примеры Операция

2.5 🖃

Примеры Операция

+ 10^{1.2} = 15.89871899 Shift ex (-) 3 + Shift to^x

Примеры

ким градусов

sec x = 1/sinx

sec 45° = 1.414213562

sinh 2.5 — cosh 2.5 =

n n82084998

 $log_381 - log 1 = 4$

• После повторного просмотра предыдущих выражений для

вычисления нажмите кнопку Shift Copy, чтобы ввести нескольких выражений вместе с текущим. Ввод нескольких выражений

Диапазоны вывода: \pm 1 x 10⁻⁹⁹ до \pm 9.999999999 x 10⁹⁹ Функция Можно вводить одновременно два или более выражений Первая строка для вычисления отмечается индикаторо [Disp/Дисплей]: значок [Disp/Дисплей] исчезает после того

Rad 0≤|x|≤785398163.3 Grad 0≤|x|≤4.99999999x10¹⁰ Deg $0 \le |x| \le 4.500000008 \times 10^{10}$ Rad 0≤|x|≤785398164.9 Grad 0≤1x1≤5.000000009x10¹⁰ Deg То же, что и sinx, за исключением, когда | x | =90(2n-То же, что и sinx, за исключением, когда I x I = π/2(2n-Grad То же, что и sinx, за исключением, когда I x I = 100(2n-1 0 ≤ | x | ≤ 1 0 ≤ | x | ≤ 9.999999999x10 0 **≤** | x | **≤** 230.2585092 0≤1x1≤4.999999999x10⁹ 1 ≦ x ≦ 4.99999 tanh⁻¹x 0≤|x|≤9.999999999 x10⁻ $0 < x \le 9.9999999999 \times 10^{99}$ $-9.999999999910^{99} \le x \le 230.2585092$ 0 ≤ x < 1x10¹⁰ | x | ≤ 2.1544346933x1 $| x | < 1x10^{100}; x \neq 0$

Точность вычислений, диапазоны вводимых значений

Точность*: Как правило точность составляет + 1 в 10-м знаке

Deg 0≤|x|≤4.49999999x10¹⁰

Диапазон ввода

Внутренние цифры: До 16

выбора постоянных величин, нажмите кнопку (value). На дисплее появится следующее ← <u>0</u> <u>0</u> mp mn me → input 1-79

10

Вычисления с постоянными величинами

F-788dx содержит 79 постоянных величин. Чтобы открыть меню

| x | < 1x10¹⁰⁰

0 ≤ х ≤ 69 (х - целое число

• Лля перехода к спедующей или предыдущей странице выбора еличин нажмите кнопку ↑ или ↓. • Для выбора постоянной величины просто нажмите кнопку или - Курсор выбора перемещается влево или вправо

выделяя символ константы, одновременно в нижней строке отображается значение выделенной постоянной. Нажмите кнопку 🖃 для выбора символа выделенной

• Можно быстро получить значение постоянной, если ввести ее

номер и нажать (=), когда курсором выделено 0 0. Дисплей Операция

🗓 (страница выбора меню) ← 00 m_p m_n m_e → INPUL 1-79 0 4 m_µ a₀ h 1,8835314 x10²⁸ (подтверждение выбора) m, (+) (value) 35 m_μ + g

20

■В полярных координатах возможны вычисление и отображение

θ в диапазоне -180° < θ ≦ 180°. (Для радиан и градов интервал

Преобразование координат

■ После преобразования результаты будут автоматически записаны в переменные памяти Е и F.

shift № : Чтобы преобразовать прямоугольные координаты (x, y) в полярные (r , θ), нажмите $\text{RCL} \subseteq ^{\text{E}}$ для отображ значения r или $\text{RCL} \subseteq ^{\text{F}}$ для отображения значени Операция

ррдинаты (х =1,у = √3). ти координаты в полярной (ксі) 🗀 истеме (r, θ) в режиме градусов.

shift $\stackrel{\text{Rec}(}{\square}$:Чтобы преобразовать полярны<u>е ко</u>ординаты (r , θ) в прямоугольные (x, y), нажмите (ксі, 📑 для отображения значения x или (ксі, 📑 для отображения значения y. Примеры Операция Дисплей (нижний)

Даны полярные координаты (r=2, Shift Rec(2 , 60 = 0=60°). Найти прямоугольные | RCL _____ 1.732050808 оординаты (х,у) в режиме градусов 🔃 📑

! Если • пропущено при преобразовании координат, отобразится собщение о синтаксической ошибке [Syntax ERROR/Ошибка

Вычисление с комплексными числами $\stackrel{\text{Re} \rightarrow \text{Im}}{---} \stackrel{i}{---} \stackrel{\text{Abs}}{---} \stackrel{\text{Arg}}{----} \stackrel{\text{L}}{----} \stackrel{\text{Pa+b}}{----} \stackrel{\text{r-t}0}{----} \stackrel{\text{Conjg}}{----}$ Комплексные числа можно вводить в прямоугольной системе координат (z = a + bi) или в полярной системе координат ($r \angle \theta$) При этом число " а " является действительной частьк комплексного числа. a " bi " - его мнимой частью (i - мнимое число, равное корню квадратному из -1, $\sqrt{-1}$), " г " - абсолютное значение, а " θ " - аргумент комплексного числа.

Мнимая ось (і)

30

25 26 27 28 ■Убедитесь, что установлены необходимые единицы измерения угла (Deg, Rad, Grad).
■Если результатом вычислений будет комплексное число, отобразится индикатор R⇔I. Нажмите Shift Ret— для переключения лисплае отобразительным лисплае отобразительным лисплае отобразительным лисплае отобразисты в переключения пределения в переключения пределения в переключения пределения в переключения в переключения в переключения в переключения пределения в переключения в пер ■ Значок [i] в результате вычисления показывает мнимую часть

о чи́сла; [∠] - значение аргумента комплексного

■Для мнимых чисел задействуется область памяти, которая

Отображение результата вычисления с комплексными числ При нажатии кнопки море ← 1 → , на дисплее отображается

← a+bi r∠θ

Чтобы настроить формат отображения результата ямоугольная система координат (установка по умолч : Полярная система координат (горит индикатор $[r \angle \theta]$). **Пример:** (12+3i) - (3+1i) = 9 + 2i = 9.219544457 (r) $\angle 12.52880771$ (θ)

Операция (единицы измерения угла: градусы)	Дисплей (веј	рхний)	Дисплей (нижний)
(12 +3 Shift i) - (3 + Shift i = Shift Re-Im	(12+3i)-(3+i (12+3i)-(3+i	R ↔ I R ↔ I	9. 2.i
море ← 1 → 2 (измените	(12+3i)-(3+i	r∠θ R ⊶I	∠ 12.52880771
отображаемое значение) Shift Re⊶len	(12+3i)-(3+i	r∠θ R ⊶I	9.219544457
Преобразование: прямоугол полярная система координа		а коор	динат ↔

прямоугольной системы координат в полярную; нажмит для преобразования комплексного числа из полярной системь координат в прямоугольную. Пример: $3 + 4i = 5 \angle 53.13010235$

∠ 53.13010235

Операция

(единицы измерения угла: градусы)	дисплеи (верхнии)
3 + 4 Shift i Shift > r.60 =	3 + 4i > r∠θ R↔I
Shift Re-Im	3 + 4i > r∠θ R↔I
	31

Подстановка, комбинация, факториалы и генерация случайных чисел

- Подстановка : $nPr = \frac{n!}{(n-r)}$
- Комбинация : nCr = $\frac{n!}{r!(n-r)}$
- Факториал : x! = x(x-1)(x-2)....(2)(1)
- 10 Shift nPr 3 =

₅ C ₂	5 Shift nCr 2 =			
5!	5 Shift X!			
-1.16	Генерация случайных чисел			

Операция

: Генерация случайного числа в диапазоне 0.999; результат будет каждый раз различ

- 0.999 ; результат будет каждый раз различным с одинаковой вероятностью выпадения любого числа.
 Shift I-Rand: : Генерация случайного числа в заданном диапазоне между двумя попожителыми целыми числами Результат будет каждый раз различным с одинаковой
- ью выпадения любого числа в заданном иапазоне Ввод разделяется ", Пример: Выполнить генерацию случайного числа в диапазоне 0.000 0.999 и генерацию целого числа в диапазоне от 1 до 100

олосо и топорацию
Операция
Shift Rand
Shift -Rand 1 100 =

* Данное значение является лишь примером, результат

Пример: $\sqrt{2} \angle 45 = 1 + i$ Операция Дисплей Дисплей ізмерения угла: градусы) (верхний) (нижний)

вычислить соответствующее абсолютное значение (г) или аргумент (θ) с помощью кнопки $\stackrel{\text{Shift Abs}}{\longrightarrow}$ или $\stackrel{\text{Shift Aps}}{\longrightarrow}$ соответственно. **Пример:** каково абсолютное значение (r) и аргумент (θ), если

Вычисление абсолютного значения и аргумента

комплексное число равно 6+8 <i>i</i>			2 (=)	64
Операция иницы измерения угла: градусы)	Дисплей (верхний)	Дисплей (нижний)	B	_
Abs (6+8 Shift i =	Abs (6+8i	10.	Вычисления с шестнадцатери Пример: (77A6C + D9) x B ÷ F = 5	
Shift Arg =	arg (6+8i	53.13010235		_

комплексного числа должна быть z = a - bi.

Пример: Сопряжением 3 + 4 <i>i</i> является 3 – 4 <i>i</i>			
Операция	Дисплей	Дисплей	
(единицы измерения угла: градусы)	(верхний)	(нижний)	

(единицы измерения угла: градусы)	(верхнии)	(нижнии)
Shift Conjg (3+4 Shift i =	Conjg (3+4i ^R	;
Shift Re→Im	Conjg (3+4i ^R ⊶	
Вычисления с основанием п	и логические	вычислени
Hawmute KHODKY MODE MODE 3 JD	а вуола в пежим	оснований лп

- операций с десятичными (основание 10), шестнадцатеричными (основание 16), двоичными (основание 2), восьмеричными снование 8) числами или логических вычислений. По умолчанию используется десятичная система счисления.
- По умогнанию используется десятичная система счисления, о чем свидетельствует индикатор [d] на экране

 Чтобы выбрать другую систему исчисления в режиме оснований, просто нажмите _ e Десатичная [d], _ e Шестнадцатеричная [H], _ m Двоичная [b] или _ Bосьмеричная [o].

 Кнопка _ e nosabnara выполнять логические вычисления, такие как: логическое объединение [And/и] / [Or/ИЛИ], исключающее ИЛИ [Xor], исключающее ИЛИ-НЕ [Xnor], дополнение НЕ [Not] и отрицание [Neg].
- Если результат вычислений с восьмеричными числами состоит из более чем 8 цифр, на экране отобразится [1b] / [1o] для
- из оолее чем к цифр, на экране отооразится [то] / [о] для уведомления о том, что результат представлен несколькими блоками. Нажимте и удерживайте [Вlk/удаление] для перехода к следующему блоку результата и наоборот.
 Нельзя использовать научные функции, а также нельзя вводить значение с десятичной дробью или степенью.

Unknowns? →	
2 3	

можно выбрать решение с двумя (2) или тремя (3) неизвестными Нажмите ^{море} или → для отображения других параметров для (3) уравнения

_	Degre	: 55		
	2	3		
Поспе	выбора	типа	vnавнения	32

тремя (3) неизвестными отобразится следующая страница с

/ Имя коэффициента		Указывает направл следующего действ
← a1?	¥	или просмотра дру связанных элемент
	0.] } Значение элемента
(Отображение примера для решен	ия системы лиі	нейных уравнений)

- уравнения ("с2" для системы уравнений с двумя неизвестными, "d3" для системы уравнений с тремя неизвестными, "с" для квадратного уравнения и "d" для кубического уравнения) можно отобразить и изменить

41

Чтобы транспонировать матрицу, выполните следующи

Пример: Транспонировать матрицу В = 6 2 < Результат:

Операция	Дисплей (верхний)	Дисплей (нижний)
Shift MATX 1 2 (Dim) 3 =		
2 = (матрица В 3х2)	MatB ₁₁	0.
9=5=6=2=8=		
4 = (Вводимый элемент)	MatB ₁₁	9.
ON/C Shift MATX →	Det Trn	1 2
2 Shift MATX 3 2 (Trn MatB)	Trn MatB	0.
(нажмите кнопку влево, вправо, вверх или вниз для отображения результата)	MatAns ₁₁	9.

Обращение матрицы

Чтобы обратить квадратную матрицу, выполните следующие действия: **Пример:** Обращение матрицы $C = \begin{bmatrix} 8 & 2 \\ 3 & 6 \end{bmatrix}$

<Результат: (0.142857142 -0.047619047) -0.071428571 0.19047619);

Операция	Дисплей (верхний)	Дисплей (нижний
hift MATX 1 3 (Dim) 2 =		
(Матрица С 2x2)	MatC ₁₁	0.
=2=3=6=		
Вводимый элемент)	MatC ₁₁	8.
N/C Shift MATX 3 3 Shift X	MatC ⁻¹	0.
= (MatC ⁻¹)	MatAns ₁₁	0.142857142
→	MatAns ₁₂	-0.047619047
+	MatAns ₂₁	-0.071428571
→	MatAns ₂₂	0.19047619

51

Чтобы найти абсолютное значение матрицы, выполните

следующие действия:

Пример: Найти абсолютное значение обращенной матрицы С из

Операция	дисплеи (верхнии)	дисплеи (нижнии)
Shift Abs Shift MATX 3 4	Abs MatAns	0.
■	MatAns ₁₁	0.142857142
→	MatAns ₁₂	0.047619047
→	MatAns ₂₁	0.071428571
→	MatAns ₂₂	0.19047619

- При этом загорится индикатор [VCTR/Вектор]
- Результаты расчетов с векторами автоматически сохраняются в памяти VctAns. Памятью VctAns можно пользоваться для

вектора используйте кнопки управления курсором 4. После окончания ввода нажмите (омс), чтобы выйти из экрана

Вычисления с двоичными числами

(в двоичном режиме)		
Операция	Дисплей (верхний)	Дисплей (нижний)
01011 + 1100 - 1001 ×		
÷ 10 =	10101011+110	10100001. b
0.5		

- В режиме SD для сохранения отображаемых данных нажмите
 В режиме SD для сохранения отображаемых данных нажмите
 Врежиме REG сохраняйте данные х и данные у в виде:
 данные x ⋅ л данные y ₀ вы Дри нажатии (ыв) оыв те же данные будут введены повторно. для многократного ввода одних и тех же данных используите зыт — Например, в режиме SD значение 20 повторяется 8 раз, следует нажать 20 shift — 8 смы.
 При каждом нажатии (смы для регистрации ввода число введенных данных, введенных на данный момент, отображается на экране только один раз (п = число введенных данных).
 Нажмите кнопку ↑ кли ↓ во время или после ввода данных для строборуще одину карим в мун вогоговоря данных для строборуще одину куберо. 645+321-23x7 чными числами 🛗 С87 (в шестнадцатеричном режим
- |xd÷d= (77A6C + D9) x B 57C87. Преобразования с основанием п $\stackrel{\text{DEC}}{\longrightarrow}$ $\stackrel{\text{OCT}}{\longrightarrow}$ $\stackrel{\text{HEX}}{\longrightarrow}$ $\stackrel{\text{BIN}}{\longrightarrow}$ 12345 + H HEO HEO HEO 3 101

Пример: 645 + 321 — 23 x 7 ÷ 2 = 1064 (в восьмеричном режиме

12345+b101 блоку результата)

логическая операция —		
Примеры (шестнадцатеричный режим)	Операция	Дисплей (нижний)
789ABC Xnor 147258	789 📥 🖶 🗂 🖽	
	3 147258 =	FF93171b. ^H
Ans Or 789ABC	Ans 2 789	
	d'd'≡	FFFb9FbF. H
Neg 789ABC	DHBO DHBO 3 789 A	
	å∸=	FF876544. ^H

каждой системы счисления (стр. 11).

квадра	атного (2) ил	и кубичес	кого (
+	Degree?)	

← a1?	мя коэффициента	√	Указывает направл следующего действ или просмотра друг связанных элемент
	0.	}	Значение элемента
Отображение п	римера для решения систем	ы линейн	ых уравнений)

- При решении квадратного или кубического уравнения имя ервого коэффициента - "а"

■ □ 2 **■ □** 2 **■** 20 **■**

омс (возврат к экрану ввода) a1?

Операция	Дисплей (верхний)	Дисплей (нижний)
shift VCTR 1 1 (создание вектора А)	VctA(m) m?	0.
2 = (Размерность вектора А - 2)	VctA ₁	0.
9 = 5 = (Вводимый элемент)	VctA ₁	9.
shift vcrr 1 2 (создание вектора В)		
2 =	VctB ₁	0.
7 = 3 = (Вводимый элемент)	VctB ₁	7.
ON/C Shift VCTR 3 1 - Shift VCTR		
3 2	VctA - VctB	0.
=	VctAns ₁	2.
→	VctAns ₂	2.

Попытка сложения, вычитания или перемножения векторов с разными размерностями приведет к появлению ошибки. Например, нельзя сложить вектор A (a,b,c) с вектором B (d,e) или вычесть эти векторы друг из друга.

Нахождение произведения вектора на скаляр результате будет получен вектор той же размерности.

- индикатор соответствующего вектора.
 2. Введите новое значение и нажмите (=) для подтверждения
- 3. После окончания ввода нажмите омс, чтобы выйти из экрана изменения вектора.

Сложение и вычитание векторов

Пример: Вектор A = (9.5), вектор B = (7.3), вектор A =

ер: Бектор A – (9,5), вектор Б – (7,5), вектор А – вектор В =?			3
Операция	Дисплей (верхний)	Дисплей (нижний)	0
/cтr 1 1 (создание вектора A)	VctA(m) m?	0.	
(Размерность вектора А - 2)	VctA ₁	0.	-
5 = (Вводимый элемент)	VctA ₁	9.	-
/ств 1 2 (создание вектора В)			

едующие действия. **Пример:** Найти скалярное произведение вектора A и вектора Пусть вектор A = (4,5,-6) и вектор B = (-7,8,9), и оба вектора уже введены в калькулятор.

Dot VctA • VctB

54

Стандартное отклонение Нажмите кнопку ^{моры} ₃ для входа в режим SD.

статистические значения.

■ Для входа в режим стандартного отк Перед началом вычис ажмите кнопку ⊜ 1 для входа в меню выбора режима егрессии. При этом будет включен индикатор [REG/Регрессия] ■ После ввода всех данных можно отобразить следующие

СТАТИСТИЧЕСКИЕ ВЫЧИСЛЕНИЯ [SD] [REG]

Для многократного ввода одних и тех же данных используйт

отображения значения данных (x) и повторяемости данных (Freq)

[х] = 20], при нажатии ф оторазится [гтеq] = 6/част т=0].
 При нажатии кнопиф и лиц ф отобразится значение данных (х), которое можно изменить. Для этого введите новое значение и нажитие (= для подтверждения изменения. При нажатии (ывы вместо (= будет сохранено новое значение данных.
 Нажав ^{Abha} , можно удалить значение данных (х).

отображающееся после нажатия кнопки ↑ или ↓; при этом

данные, которые следовали за удаленным значением, буду

Мажмите кнопку бые для выхода из окна, отображающего значение данных и его повторяемость. Теперь можно осуществлять другие вычислительные операции.
 Входные данные хранятся в памяти вычислений. Если

количество сохраненных данных превысит максимально допустимое, появится предупреждение [Data Full/Переполнение

данных]. В этом случае ввод данных и вычисления будут

невозможны. Нажмите кнопку или 🖃 для отобра: параметра [EditOFF/Редактирование Откл] или [ESC].

EditOFF (Нажмите Вводимые данные можно не сохранять

• После смены режима или типа регрессии (Lin, Log, Exp, Pwr, Inv, Quad) введенные данные будут удалены ■ После завершения ввода данных можно восстановить или

Кубическое уравнение : $ax^3 + bx^2 + cx + d = 0$ (уравнение в

Пример: Решить кубическое уравнение $5x^3 + 2x^2 - 2x + 1 = 0$

Операция Дисплей (верхний) Дисплей (нижн

Degree?

многочлена второго порядка с одним

- 0.331662479

виде многочлена третьей степени

Квадратные и кубические уравнения

5 = 2 = (-) 2 = 1 = x1 =

Функция поиска решения SOLVE

следующей формуле:

радиус 2 см.

 $V = \frac{1}{3}\pi r^2 h$ $A = \frac{1}{3}\pi B^2 C$

■ В режиме СОМР можно найти решение для любого

иенными и нажмите кнопку ^{shift} □

выражения. Просто введите выражение с различными

Пример: Конус высотой "h", основанием которого является

Итак, можно заменить переменную "V" на "A", переменную "r" -

Рассчитайте объем конуса, если радиус равен 5 см. а высота 20

круг радиуса "г". Объем конуса рассчитывается по

кнопку 🕕) :

кнопку (2)):

1 = 20], при нажатии **↓** отобразится [Freg1= 8/Част1=8].

- Shift S-SUM 2 Размер выборки данных Среднее значение х Shift S-VAR 1 ндартное отклонение совокуп Shift S-VAR 2 Shift S-VAR 3 Стандартное отклонение выборки х хот п-1 **Пример:** Вычислить Σx^2 , Σx , n, \overline{x} , $x \sigma_n$, и $x \sigma_{n-1}$ для значений: 75, 85, 90, 77, 77 в режиме SD.

) или 🔞 для выбора

Операция	Дисплей (верхний)	Дисплей (нижний)
Shift CLR 1 (выберите Scl, очистите статистическую память)	Stat dear	0.
75 Data 85 Data 90 Data 77 Shift ; 2 Data	n =	5.
Shift s-sum 1 =	Σx^2	32,808.
Shift s-sum 2 =	Σχ	404.
Shift s-sum 3 =	n	5.
Shift S-VAR 1 =	x	80.8
Shift S-VAR 2 =	xσn	5.741080038
Shift S-VAR 3 =	Xσ _{n-1}	6.418722614

■ Нажмите кнопку МОВЕ МОВЕ Т для перехода в режим REG, на экране отобразятся следующие параметры:

в памяти, при этом их просмотр и измен будут невозможны. og Exp → Для этого просто выйдите из окна ввода данных, не сохраняя данные в памяти. 3

		Lin	Lo
		1	2
	Hax	кмите кнопку	
Lin]	= линей	іная регрессия	

Log] = логарифмическая регрессия [Ехр] = экспоненциальная регрессия

Операция	Дисплей (верхний)	Дисплей (нижний)
MODE 1		0.
Alpha A Alpha = (1 a kc 3		
	A=(1_3) π B ² C	0.
Shift Solve	A?	0.
▼	B?	0.
5 = (радиус B = 5 см)	C?	0.
20 = (высота С = 20 см)	C?	20.
**	A?	0.
Shift Solve	A =	523.5987756
(вычисление с новыми переменными)	Α?	523.5987756
200 = (объем А = 200 см3)	B?	5.
2 = (радиус В = 2 см)	C?	20.
Shift Solve	C =	47.74648293

решения калькулятор преобразует результат вычисления в ! Если уравнение решить невозможно, то отобразится

сообщение [Solve ERROR / Ошибка вычисления].

Функция CALC

- Функция САLС является областью памяти для сохранения выражений с максимальным количеством действий равным 79. Эти выражения могут вызываться из памяти и вычисляться несколько раз с различными значениями
- отобразит запрос на ввод текущих значений переменных ■ Имейте в виду, что функция CALC может использоваться

Если выражение не имеет знака равенства (=), то при поиске

лько в режимах COMP и CPLX.

45

Пример: Найти векторное произведение вектора A и вектора B Пусть вектор A = (4,5,-6) и вектор B = (-7,8,9), и оба вектора уже введены в калькулятор.

Чтобы найти векторное произведение двух векторов, выпо

Нахождение векторного произведения двух векторов

Операция	Дисплей (верхний)	Дисплей (ни
омс Shift vств 3 1 (отображение		
вектора А)	VctA	
×	VctA x	
Shift VCTR 3 2	VctA x VctB	
(VctA x VctB)	VctAns ₁	
→	VctAns ₂	
→	VctAns ₃	

Нахождение модуля вектора

действия: введен в калькулятор.

Операция	Дисплей (верхний)	Дисплей (н
Shift Abs Shift VCTR 3 3	Abs VctC	
	Abs VctC	8.774964
Пример: Дан вектор А=(-1, -2, 0) и вектор В=(1, 0, -1), определите величину угла между ними (единицы измерения угла: градусы) и единичный вектор 1, перпендикулярный обоим векторам А и В.		

Чтобы найти модуль (длину) вектора, выполните следующие

Shift Abs Shift VCTR 3 3	Abs VctC	
≡	Abs VctC	8.774964
Пример: Дан вектор А=(-1, -2 определите величин измерения угла: гра перпендикуляры	ну угла между ними дусы) и единичный обоим векторам Ат	ı (единицы ı вектор 1,

Результат: $\frac{VctA \times VctB}{|VctA \times VctB|} = (0.666666666, -0.333333333, 0.666666666)$

СОВЕТЫ І	1 МЕРЫ ПРЕ	ЕДОСТОРОЖН	ОСТИ
LSI, поэтому	его не рекомен,	ных деталей, таких н дуется использоват	ьв
		ми температур, пов ю, запыленностью	

- презмерному давлению. Не используйте для чистки устройства влажную ткань или летучие жидкости, такие как разбавитель для краски. Вместо этого пользуйтесь только мягкой сухой тканью.

Σx^4 Shift s-sum $\rightarrow \rightarrow 3$ умма всех величин х Shift S-VAR → → 3 ффициент регрессии Shift s-var → → → 1 Расчетное значение регрессии х Shift s-VAR → → → 2 асчетное значение регрессии: Shift s-var → → → 3 Расчетное значение регрессии v Линейная регрессия • Формула линейной регрессии предполагает наличие двух переменных: y = A + Bx

Shift s-var → → 3

Shift s-var → → → 1

Shift s-var → → → 2

 Σx^3 Shift S-SUM $\Rightarrow \Rightarrow 1$

 $\Sigma x^2 y$ $\stackrel{\text{Shift s-sum}}{\Box} \rightarrow \rightarrow 2$

20 , 120 Data 30 , 126 Data 40 ,

0 (Data) 50 3 136 (Data) 60 3 141 (Data)

Shift S-VAR → → 1 = (коэффициент А)

ft s-var → → 3 (=) (Коэффициент корре

обратной регрессии

Степенная регрессия

• Обратная регрессия

Квадратичная регрессия

S-VAR → → 2 = (коэффициент В)

45 Shift S-VAR → → → 2 = (прибыль %) 45 ŷ

180 Shift S-VAR → → → 1 = (Инвестиции, ед) 180 x̂

• Логарифмическая регрессия : y = A + Blnx

• Для квадратичной регрессии используется формула-

Формулы логарифмической, экспоненциальной, степенной и

Экспоненциальная регрессия : y = Ae^{Bx} (Iny = InA + Bx)

• Пример: Компания АВС проанализировала эффективность затрат

Расходы на рекламу: х Эффективность: у (%

на рекламу в принятых единицах, были получены следующие

Вычислите коэффициент корреляции; с помощью формуль

затратах х = 30, определите уровень затрат (значение х) при

■ Результаты расчетов с матрицами автоматически сохраняются

в памяти MatAns. Памятью MatAns можно пользоваться для

■ При операциях с матрицами может быть использовано до двух

уровней стека. Однако при возведении матрицы в квадрат, в

1. Нажмите кнопку Shift матх 1 (Dim), чтобы задать имя матрицы

2. Затем введите значение (элемент) для соответствующего

■ Перед тем как начать операции с матрицами, необходим

любых последующих операций с матрицами.

Максимальный размер матрицы 3 х 3.

Пример индикации элемента матрицы:

создать от одной до трех матриц, называемые А, В и С.

Операции с матрицами

Создание матрицы

y = Ax^B (Iny = InA + BInx)

Расчетное значение регрессии

асчетное значение регрессии

умма всех величин х³

умма всех пар х²у

Если затем следует ^{морв} или → , другие параметры регрессии

← Pwr Inv Quad

1 2 3

[Pwr] = Степенная регрессия

Сумма всех величин х²

умма всех величин х

Размер выборки данных

/мма всех величин у²

мма всех величин у

Сумма всех всех пар ху

Среднее значение величин :

андартное отклонение совокупно

еднее значение величин у

Стандартное отклонение выборки

Y Alpha = 5 Alpha X X

Вычисление производной

выражение в следующем виде:

D • 10 • 1 EXP (-) 8

(calc) 7 (=)

Соэффициент регрессии

Коэффициент регрессии

ндартное отклонение выборки

[Quad] = Квадратичная регрессия

Для выбора соответствующей регрессии можно нажать

1, 2 или 3

■ Перед началом вычислений очистите статистическую память, нажав ﷺ св т = .

Символ Операция

Σx Shift s-sum 2

n Shift s-sum 3

 Σy^2 Shift s-sum \rightarrow 1

 $\Sigma y \qquad \qquad \stackrel{\text{Shift s-sum}}{\frown} \Rightarrow 2$

 Σxy $\stackrel{\text{Shift s-sum}}{\bigcirc} \rightarrow 3$

 $X\sigma_{n-1}$

 $y\sigma_{n-1}$

Пример: Дано уравнение Y = $5x^2 - 2x + 1$, найти значение Y при

Операция Дисплей (верхний) Дисплей (ниж

 $Y = 5x^2 - 2x + 1$

 $Y = 5x^2 - 2x + 1$

 $Y = 5x^2 - 2x + 1$

! Сохраненное выражение (САС) будет удаляться при каждом новом вычислении, переключении на другой режим или при выключении калькулятора.

■ Нажмите кнопку от 1, чтобы установить режим СОМР для

• Дифференциальное выражение должно содержать

"\(\sigma \times \)" - диапазон изменения х (точность вычисления)

Пример: Чтобы найти производную функции $f(x) = \sin(3x + 30)$ в точке x = 10, $\triangle x = 10^{-8}$.

! В дифференциальном выражении можно оставить △х, калькулятор автоматически заменит это значение на △х.
! Чем меньше введенное значение △х, тем больше времени займет вычисление, и тем точнее будет результат. А чем больше введенное значение Ах, тем меньше времени займет вычисление, результат вычисления будет сравнительно менее

точным. Наличие дискретных элементов и резких изменений величины х может привести к неточным результатам или ошибкам. При выполнении вычисления производной для тригонометрических функций в качестве единиц измерения

гла выберите радианы́ (Rad). Рункции Log₃b, i∼Rand, Rec (и Pol) не могут быть

Операция

2 = (VctA • VctB)

: (Shift Abs Shift VCTR 3 1 ×

Shift Abs Shift VCTR 3 2) =

ычисление VCtA I x I VctB I

использованы в выражениях при вычислении производной Во время выполнения вычисления калькулятор будет отображать сообщение [PROCESSING / Выполнение]

Операция Дисплей (верхний) Дисплей (нижни

" - коэффициент производной.

Для выполнения вычисления производной необходимо ввести

Shift S-VAR 1

Shift S-VAR 2

Shift S-VAR 3

Shift S-VAR → 1

Shift S-VAR → 2

Shift S-VAR → 3

Shift S-VAR → →

B Shift S-VAR → → 2

Shift S-SUM 1

■ Введите данные в виде данных х , данных у рака. Для

■ Можно вызвать и использовать следующие результаты

• Пример: По данной таблице инвестиций и прибыли вычислите

зависимости прибыли от инвестиций в основной капитал, коэффициент корреляции, процент прибыли на 45 тысяч единиц инвестиции и единицу инвестиции при 180% прибыли

Инвестиции (тыс.)	Прибыль (%)
20	120
30	126
40	130
50	136
60	141

■ Нажмите кнопку ^{море} (1), чтобы установить режим СОМР для вычисления интеграла. Для вычисления интеграла необходимо ввести следующие ∫дк подынтегральное выражение ¬а ¬ b ¬ п ¬

ынтегральное выражение содержит переменную х. • "а" и "b" определяют пределы интегрирования • "n" - число разбиений (эквивалентно N = 2ⁿ)

Вычисление интеграла

 $\int_{-\infty}^{\infty} f(x) dx$, n = 2ⁿ, 1 \leq n \leq 9, n \neq 0 Так как количество значащих цифр увеличилось, внутренние вычисления интегратов могут занять много времени. В некоторых случаях даже если на выполнение вычисления затрачивается большое количество времени, результаты расчета могут быть неверными. В частности, если количество

■ Вычисление интеграла осуществляется по формул Симпсона.

значащих цифр менее 1, может отобразиться сообщение

Пример: Найти интеграл для функции $\int_{2}^{3} (5x^{4} + 3x^{2} + 2x + 1) dx, при n = 4.$

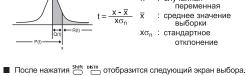
ERROR (Ошибка).

J ₂ (*** *** ***	.,,.,,.,	
Операция	Дисплей (верхний)	Дисплей (нижний)
/dx 5 Alpha X A 4 + 3 Alpha		
X \(2 \div 2 \div 2 \div 4 \div 1 \d		
,2,3,4)=	f(5X^4+3X^2+	236.

- Число разбиений (n) должно быть целым числом в диапазоно тисто разочении (п.) должно овта целым числом в диапастот 1 до 9, если будет введено любое другое значение (N=2", n≠0, n=1-9 целое число), то отобразится сообщение [Arg ERROR/Oшибка аргумента].

 Можно не вводить число разбиений, тогда калькулятор сам
- автоматически назначит подходящую величину. Чем меньше значение п, тем меньше времени займет
- тем меняше эремпения заимет вычисление, но результат будет сравнительно менее то-А чем больше значение п, тем больше времени займет вычисление и более точным будет результат. При вычислении интеграла от тригонометрических функций в качестве единиц измерения угла выберите радианы (Rad)
- Функции Log_ab, i~Rand, Rec (и Pol (не могут быть

3 = (создание вектора A) | VctA₁ тановленной контрастности жидкокристаллическо ндикаторной панели, замените литиевую батарею, =) (-) 2 (=) 0 (=) (вводимые элементы) VctA₁ З = (создание вектора В) VctB₁ cos 1 Ans 108 4349488


■ Электромагнитные помехи или

привести к короткому замыканию. Никогда не оставляйте батарею в местах с высокой температурой, прямым нагревом и сжигайте ее.

ре 1 → 3 (Квадратичная регре , 38 (Data) 35 (, 54 (Data) 40 (, 59 (Data) , 40 Data 19 , 38 Data s-var → → 1 = (коэффициент A) A S-VAR → → 2 = (коэффициент B) B S-VAR → → 3 = (коэффициент C) Shift S-VAR $\rightarrow \rightarrow \rightarrow 3 = (\hat{y}, \text{ если } x = 30)$ 30 \hat{y} 48.69615715 $ft \text{ s-VAR} \to \to \to 1 \equiv (\widehat{x}_1, \text{ если } y = 50) \quad 50 \ \widehat{x}_1 \qquad 31.30538226$ 0 Shift s-var $\rightarrow \rightarrow \rightarrow 2$ = $(\widehat{x}_2, ecли y = 50) <math>50 \widehat{x}_2$


режиме регрессии (REG) можно выполнить вычисления для

вероятностей, например P(t), Q(t) и R(t), где t - это переменная вероятностного эксперимента

Для выбора соответствующих вычислений можно нажать 1, 2, 3 или 4.

Вычисление с распределениями

 $P(Q(R) \rightarrow t)$

1 2 3 4

[1 2 3] [9 8 7] Пример: $MatA = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$, $MatB = \begin{bmatrix} 6 & 5 & 4 \end{bmatrix}$, MatA x MatB=? [7 8 9] [3 2 1]

Сложение, вычитание и умножение матриц

	Дисплей (верхний)	Дисплей (нижний)
Shift матх 1 1 (матрица А		
3 x 3)	MatA(mxn) m?	0.
3 = 3 = (матрица A 3 x 3)	MatA ₁₁	0.
1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 = Водимый элемент)	MatA ₁₁	1.
Shift матх 1 2 (матрица В 3 х 3) 3 = 3 =	MatB ₁₁	0.
9=8=7=6=5=4 =3=2=1= (Вводимый элемент)	MatB ₁₁	9.
ON/C Shift MATX 3	A B C Ans	1 2 3 4
1 ×	MatA x	0.
Shift MATX 3 2	MatA x MatB	0.
=	MatAns ₁₁	30.
→ (нажмите кнопку влево, вправо, вверх или вниз	M-10	04

для отображения результата) MatAns12 ! Складываемые, вычитаемые или перемножаемые матриць должны иметь одинаковый размер. Попытка сложения, вычитания или перемножения матриц разного размера приведет к ошибке. Например, нельзя сложить или вычесть

матрицы 2 х 3 и 2 х 2.

2 x Shift MATX 3 3 2 x MatC MatAns₁₂

<Результат:-4/1>			
Операция	Дисплей (верхний)	Дисплей	(нижни
hift MATX 1 3 (Dim) 3 =			
3 = (матрица С 3х3)	MatC ₁₁		(
10=(-)5=3=(-)4			
= 9 = 2 = 1 = 7 =			
3 (Вводимый элемент)	MatC ₁₁		1
ON/C Shift MATX →	Det Trn	1 2	
1 Shift MATX 3 3 (DetMatC)	Det MatC		

17/F., Ever Gain Plaza, Tower One, 82-100 Container стр. 3, зтаж 5 Эл адрес: info@canon ru в Санкт-Петербурге

(Záhony utca 7.)

elefon: (+361) 2375900 Fax: (+361) 2375901 Internet: www.canon.hu POLSKI 02-117 Warszawa

e-mail: infooffice@canon.bg www.canon.bg ROMANIAN **CANON EAST EUROPE - BUCHAREST OFFICE** World Trade Center, entrance D, unit 1. 15, Pţa. Montreal nr. 10, sector 1 Bucharest, Romania

fax number 40-21-224-42-36 e-mail: office@canon ro **CANON NORTH-EAST OY** Huopalahdentie 24, P.O. Box 46, FIN-00351 Helsinki,

59

(t) = 1 - P(t),данных выборки: 20, 43, 26, 46, 20, 43, 26, 19, 23, 20 при х = 26 Дисплей (нижн 20 (Data) 43 (Data) 26 (Data) 46 (Data) 20 (Data

Q(t): вероятность

точки х и больше

R(t): вероятность

больше указанной

43 Data 26 Data 19 Data 23 Data 20 Data 26 Shift DISTR 4 26 → t

 $t) = \int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} (\frac{t-u}{\sigma})^2} dt ,$

t) = 0.5 - R(t)

Нахождение определителя матрицы

в Москве

Набережная реки Мойки 36, Бизнес-центр «Северная Столица Тел. +7 (812) 326-61-00. факс +7 (812) 326-61-09 Эл. aдрес: spb.info@canon.ru в Киеве Украина, 01030, Киев, ул. Богдана Хмельницкого

CANON POLSKA SPOL s.r.o. UI, Moldawska 9, 02-117 Warszawa, Poland CANON SLOVAKIA s.r.o. CANON MIDDLE EAST FZ-LILC City P.O. Box 500007 Dubai U.A.F. CANON SOUTH AFRICA PTY. LTD.

820, 16th Road Midrand South Africa.

52

я загорается индикатор [EQN/

• В качестве коэффициента нельзя вводить комплексное число

42

Нахождение абсолютного значения матрицы

Операции с векторами ■ Войдите в режим операций с векторами, нажав С С 2.

1) (Размерность), чтобы задать имя вектора (А, В или С), и укажите его размерность. 2. Затем введите значение (элемент) для соответствующего

VctA1 Мндикатор координатной оси, другие элементы можно 0. просмотреть на следующей странице. 3. Для перемещения, просмотра и изменения элементов

Пример: Умножить вектор С = (4,5,-6) на 5 Операция Дисплей (верхний) Дисплей (нижн * 1 3 (создание вектора C) VctC(m) m? N/C 5 × Shift VCTR 3 3

5 x VctC

 $s \times VctA(a,b) = VctB(axs, bxs)$

Чтобы найти произведение вектора на скаляр, выполните

Операция Дисплей (верхний) Дисплей (нижни

Пример: Найти модуль вектора С, если вектор С = (4,5,-6) и уже

9	Abs VctC	8.77496
имер: Дан вектор А=(-1, -2, 0) и вектор В=(1, 0, -1), определите величину угла между ними (единице измерения угла: градусы) и единичный вектор 1. перпендикулярный обоим векторам А и В.		
$\cos \theta = \frac{(A \cdot B)}{ A B }$, To	огда как θ = cos -1 $\frac{\theta}{1}$	\ • B) A B

Единичный вектор 1, перпендикулярный A и B = $\frac{A \times B}{|A \times B|}$

55

врачу. ■ Неправильное использование батареи может привести к

MatA23 матрицы используйте кнопки управления курсором. 4. После окончания ввода нажмите оно, чтобы выйти из экрана

Изменение элементов матрицы

использованы в выражениях при вычислении интеграла. Во время выполнения вычислений на калькуляторе будет отображаться сообщение [PROCESSING/Обработка].

АМЕНА БАТАРЕИ Если индикация тусклая даже при самой высокой

. Нажмите кнопку огг , чтобы выключить питание нажмите киотку — , чтобы выплочить питание калькулятора.
 Выверните винт, который крепит крышку батареи.
 Немного сместите крышку батареи и поднимите ее.
 Извлеките старую батарею с помощью шариковой ручки или другого острого предмета.
 Вставьте новую батарею, так чтобы ее положительный контакт "+" был направлен вверх.
 Установите крышку батареи, закрепите ее винтом, затем нажмите кнопку гезеt, чтобы восстановить первоначальные настройки калькулятора.

кто-либо проглотил батарею, немедленно обратитесь к

48

обратной стороне изделия) Потребляемая мощность : D.C. 3,0 В / 6 мВт :Приблизительно 6000 часов непрерывной работы с мигающим курсором Автоматическое

135 г (вместе с крышкой) уведомления.

58

Port Road, Kwai Chung, New Territories, Hong Kong **Europe, Africa and Middle East** Canon Europa N.V. P.O. Box 2262, 1180 EG Amstelveen, Netherlands **SLOVENIJA** Canon Adria d.o.o., Dunajska cesta 128a, p.p. 581 1521 Ljubljana Tel.: 061/53 08 710 Fax: 061/53 08 745 MAGYARORSZÁG Canon Hungária Kft, 1031 Budapest, Graphisoft Park 1.

CANON ELECTRONIC BUSINESS

MACHINES (H.K.) CO., LTD.

ČESKÁ VERZE Canon CZ s.r.o., nám. Na Santince 2440. 160 00 Praha 6. Česká republika BULGARIAN

phone number 40-21-224.38.54

Нахождение произведения матрицы на скаляр результате будет получена матрица той же размерности. Чтобы найти произведение матрицы на скаляр, выполните следующие

Пример: Умножить матрицу $C = \begin{vmatrix} 1 & 1 & 1 \\ -1 & 5 \end{vmatrix}$ на 2 < Результат: $\begin{vmatrix} 1 & 1 & 1 \\ -2 & 10 \end{vmatrix}$ Операция Дисплей (верхний) Дисплей (нижний MatC(mxn) m? 2(=) 2 (=) (матрица С 2x2) | MatC₁₁ 3=(-)2=(-)1=5= димый элемент)

! Попытка найти определитель матрицы, отличной от

Представительства Canon Россия, 113054, Москва, Космодамианская наб. 52, Тел. +7 (095) 258 5600, факс +7 (095) 258 5601

Тел. +380 (44) 490 2595, факс +380 (44) 490 2598 Эл. aдрес: post@canon.kiev.ua

РАСШИРЕННЫЕ НАУЧНЫЕ ВЫЧИСЛЕНИЯ

■ Нажмите ^{море} 3 для выбора режима уравнения. Будут

предыдущего примера.		
Операция	Дисплей (верхний)	Дисплей (нижний)
Shift Abs Shift MATX 3 4	Abs MatAns	0.
	MatAns ₁₁	0.142857142
→	MatAns ₁₂	0.047619047
→	MatAnsoa	0.071428571

■ Перед тем как начать вычисления с векторами, необходимо создать один или несколько векторов с именами А, В и С (не более трех векторов одновременно).

645 (+) 321 (-) 23 × 7 ÷

√2∠45>a+bi ^R

Сопряженное число комплексного числа Если комплексное число - z = a + bi, сопряженная величина этого

! Не забывайте о диапазоне допустимых значений для

После ввода последнего коэ результат решения уравнени		
/ Имя переменной	_	Указывает направление следующего действия
← X =	*	или просмотра других результатов.
	0.	Результат

 Нажмите кнопку ↑ ↓ или = для отображения результатов • Если необходимо вернуться к экрану вода коэффициентов, нажмите кнопку (ом/с).

(Отображение примера для решения системы линейных уравнений

Система линейных уравнений с двумя неизвестными:

Система линейных уравнений с тремя неизвестными:

Система линейных уравнений

 $a_1x + b_1v = c_1$

 $a_2x + b_2y = c_2$

 $a_1x + b_1y + c_1z = d_1$

 $a_2x + b_2y + c_2z = d$

• Для квадратного или кубического уравнения имя первой

$a_3x + b_3y + c_3z = d_3$			
имер: Решить систему ур	авнений с тремя не	известными:	
2x + 4y - 4z = 2	0		
2x - 2y + 4z = 8			
5x - 2y - 2z = 2	0		
Операция	Дисплей (верхний)	Дисплей (нижний)	
E MODE 3	Unknowns? →	2 3	

Чтобы выполнить операции сложения или вы векторов, выполните следующие действия:

shift cor' Ans = (вычисление = $\cos^{-1} \frac{(A \cdot B)}{|A||B|}$) Shift VCTR 3 4 ÷ Ans = исление $\frac{VctA \times VctB}{|VctA \times VctB|} =$

подвергаемых воздействию прямых солнечных лучей. Жилкокристаплическая индикаторная панель

Электромагнитные помехи или электрокстатический разряд могут вызывать ошибки при отображении, а также потерю или изменение значений в памяти. В этом случае с помощью кончика стержня шариковой ручки (или аналогичного острого предмета) нажмите кнопку [RESET/ сброс] с задней стороны калькулятора.

утечке жидкости из них, взрыву, повреждениям или

■ Не перезаряжайте и не разбирайте батарею, это может

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

выключение питания :0 ~ 40°C (32F ~ 104F) Разме : 155 (Д) x 80 (Ш) x 14,5 (В) мм (корпус) 158 (Д) x 84 (Ш) x 18 (В) мм (с крышкой)

■ Во время выполнения вычислений на калькуляторе будет бражаться сообщение [PROCESSING/Обработка]

2 = 4 = - 4 = 20 = a2? 2 ■ □ 2 ■ 4 ■ 8 ■ a3?

43

Изменение элементов вектора
1. Нажмите ≒ □ (Еdit/Редактирование), затем укажите какой вектор (А, В или С) следует изменить. Отобразится

вектор В =?			
Операция	Дисплей (верхний)	Дисплей (нижний)	
1 (создание вектора А)	VctA(m) m?	0.	
азмерность вектора А - 2)	VctA ₁	0.	
= (Вводимый элемент)	VctA ₁	9.	
1 (создание вектора В)			_
	VctB ₁	0.	H
= (Вводимый элемент)	VctB ₁	7.	E
VCTR 3 1 - Shift VCTR			c

ахождение скалярного произведения двух калярное произведение двух векторов можно найти, выполнив

64387

изготовлена из стекла, поэтому ее нельзя подвергать

Ни в коем случае не разбирайте данное устройство.
 Если вам кажется, что калькулятор неисправен, принесите или отправьте устройство вместе с гарантийным талоном в центр технического обслуживания представительства Canon.

56

■ Храните батарею в недоступном для детей месте. Если

57

2. Введите новое значение и нажмите (=) для подтверждения 3. После окончания ввода нажмите оже, чтобы выйти из экрана

Одна литиевая батарея (см. на

Canon Polska Sp. z o.o., ul. Raclawicka 146, tel. (+48 22) 572 30 00 fax: (+48 22) 668 61 15 Tel. +420 225 280 111 Fax. +420 225 280 311 CEE CANON EAST EUROPE - Sofia Information Office

Tel. +358 10 544 20 Fax +358 10 544 10

http://www.canon.ru

Определитель квадратной матрицы можно найти, выполниє следующие действия: Пример: Найти определитель матрицы С = -4 9 2

Россия 191186, Санкт- Петербург,

Sancova 4, 811 04 Bratislava, Slovak Republic

PUB NO. E-IR-011

53